Vitamin A May Play a Central Role in Stem Cell Biology and Wound Repair

Advance in Elaine Fuchs Lab at Rockefeller University
Hair follicle stem cells (green) mobilize and expand (white) to help repair the skin’s barrier by differentiating into epidermal lineages (red).

When a child falls off her bike and scrapes her knee, skin stem cells rush to the rescue, growing new epidermis to cover the wound. But only some of the stem cells that will ultimately patch her up are normally dedicated to replenishing the epidermis that protects her body. Others are former hair follicle stem cells, which usually promote hair growth but respond to the more urgent needs of the moment, morphing into epidermal stem cells to bolster local ranks and repair efforts. To do that, these hair follicle stem cells first enter a pliable state in which they temporarily express the transcription factors of both types of stem cells, hair and epidermis. Now, new research demonstrates that once stem cells have entered this state, known as lineage plasticity, they cannot function effectively in either role until they choose a definitive fate. In a screen to identify key regulators of this process, retinoic acid, the biologically active form of Vitamin A, surfaced as a surprising rheostat. The findings shed light on lineage plasticity, with potential clinical implications.

Login Or Register To Read Full Story