Study Supports Potential for Tailoring Patient-Specific Treatments for Acute Myeloid Leukemia (AML)

Advances in rapid screening of leukemia cells for drug susceptibility and resistance are bringing scientists closer to patient-tailored treatment for acute myeloid leukemia (AML). Research on the drug responses of leukemia stem cells may reveal why some attempts to treat are not successful or why initially promising treatment results are not sustained. AML is a serious disorder of certain blood-forming cells. In this disease, certain early precursor cells in the bone marrow that usually develop into white blood cells don't mature properly. They remain frozen as primitive cells called blasts, unable to further differentiate and mature. These can accumulate and cause low blood counts that reduce the ability to fight infections, and low platelet counts that cause risk of life-threatening hemorrhage. Leukemia stem cells - the progenitors for the immature, cancerous blood cells - propagate AML, and also play a role in the cancer returning after treatment. Cancer researchers are interested in how genes are expressed in this cell population, because this data may hold clues to resistance to standard therapies and answers to why some patients relapse. A study presented at the 60th Annual Meeting of the American Society of Hematology in San Diego (December 1-4, 2018) looked at the drug response patterns of stem cells and blast cells taken from individual patients diagnosed with AML. The information was gathered through high-throughput screening, a state-of-the-art method for quickly evaluating and testing many samples. The researchers found that leukemia stem cells and blast cells diverged in their drug susceptibility patterns, and also that these patterns differed from patient to patient.
Login Or Register To Read Full Story