Streamlined Approach for Reconstructing Accurate DNA Sequence

Researchers at the Genome Institute of Singapore (GIS) have, for the very first time, developed a computational tool that comes with a guarantee on its reliability when reconstructing the DNA sequence of organisms, thus enabling a more streamlined process for reconstructing and studying genomic sequences. The work, lead by Dr. Niranjan Nagarajan, Assistant Director of Computational and Mathematical Biology at the GIS, was reported in the November 10, 2011 issue of the Journal of Computational Biology. The genomic study of life (plants and animals alike) is based on computational tools that can first piece together the DNA sequence of these organisms, a process called genome assembly, that is similar to solving a giant puzzle or putting together the words in a book from a shredded copy. Due to the sheer scale of this challenge, existing approaches for genome assembly rely on heuristics and often result in incorrect reconstructions of the genome. The work reported here represents the first algorithmic solution for genome assembly that provides a quality guarantee and scales to large datasets. A new and improved implementation for this algorithm called Opera is now freely available at and has been used at the GIS for successfully assembling large plant and animal genomes. The assembled genome of an organism forms the basis for a range of downstream biological investigations and serves as a critical resource for the research community. The draft human genome, for example, was obtained at the expense of billions of dollars, serves as a fundamental resource for biomedical research and is, in fact, still being refined.
Login Or Register To Read Full Story