Life Science and Medical News from Around the Globe
Selectively Manipulating Protein Modifications
Protein activity is strictly regulated. Incorrect or poor protein regulation can lead to uncontrolled growth and thus cancer or chronic inflammation. Members of the Institute of Veterinary Biochemistry and Molecular Biology from the University of Zurich have identified enzymes that can regulate the activity of medically important proteins. Their discovery enables these proteins to be manipulated very selectively, opening up new treatment methods for inflammations and cancer. The work was published online on March 10, 2013 in Nature Structural & Molecular Biology. A related article was also published online at the same time in the same journal. For a healthy organism, it is crucial for proteins to be active or inactive at the right time. The corresponding regulation is often based on a chemical modification of the protein structure: Enzymes attach small molecules to particular sites on a protein or remove them, thereby activating or deactivating the protein. Members of the Institute of Veterinary Biochemistry and Molecular Biology from the University of Zurich, in collaboration with researches at other institutes, have now discovered how the inactivation of a protein, which is important for medicine, can be reversed. An important protein modification is ADP-ribosylation, which is involved in certain types of breast cancer, cellular stress reactions, and gene regulation. So-called ADP-ribosyltransferases attach the ADP ribose molecule to proteins, thereby altering their function. In recent years, many ADP-ribosyltransferases have been discovered that can convey single or several ADP-riboses to different proteins. Enzymes that can remove these riboses again, however, are less well known. Professor Michael Hottiger's team of researchers has now identified a new group of such ADP-ribosylhydrolases.