Scientists Identify Protein (KIF18A) Key to Cancer Cells’ Ability to Replicate Despite Aneuploidy

An international research team, co-led by the Technische Universität Kaiserslautern (TUK), has identified a vulnerability in most cancer cells that could help lead to drugs that target tumors regardless of cancer type. Cancer cells with an abnormally high number of chromosomes appear to rely on a particular protein (KIF18A) for cell division and largely die when that protein is blocked, researchers in Germany, Israel, Italy, and the US report in an online publication on January 27,2021 in Nature (https://www.nature.com/articles/s41586-020-03114-6). The article is titled “Aneuploidy Renders Cancer Cells Vulnerable to Mitotic Checkpoint Inhibition.” Because more than 90 percent of tumors, regardless of tissue type, contain extra chromosomes, this protein could present an effective target for treating a wide range of cancers. “We think we have found a possible vulnerability of cancer cells with abnormal chromosome numbers,” says Zuzana Storchová, PhD, a Professor of Molecular Genetics at the Technische Universität Kaiserslautern (TUK) in Germany, and a co-senior author of the Nature article. Normal, healthy human cells have 46 chromosomes, but malignant tumors often consist of highly abnormal cancer cells that can have deviant chromosome numbers, usually ranging between 60 to 90 chromosomes. They are called aneuploid cancer cells. For a long time, researchers thought aneuploidy was a side-effect of cells turning cancerous, but in the last 15 years, more suspect this might be one of the driving forces of cancer. Finding a common feature associated with this aberrant number of chromosomes could be critical for targeting cancer, regardless of where it develops in the body. Dr. Storchová and collaborators conducted extensive experiments with nearly 1,000 cell lines from human cancer patients and model cancer cells cultured in the lab.
Login Or Register To Read Full Story