Scientists ID Misfolded Protein Form That Best Predicts Neuron Death in Huntington’s Disease

Scientists at the Gladstone Institutes in San Francisco, California, have discovered how a form of the protein linked to Huntington's disease influences the timing and severity of its symptoms, offering new avenues for treating not only this disease, but also a variety of similar conditions. In a paper published online on October 30, 2011 in Nature Chemical Biology, the laboratory of Gladstone Senior Investigator Dr. Steven Finkbeiner singles out one form of a misfolded protein in neurons that best predicts whether the neuron will die. Neuronal death is key to the development of Huntington's symptoms—including erratic behavior, memory loss, and involuntary muscle movement. This research underscores the value of the cross-disciplinary work done at Gladstone—a leading and independent biomedical–research organization—while revealing techniques that scientists anywhere can apply to conditions involving misfolded proteins, such as Alzheimer's disease and type 1 diabetes. "Effective treatments for diseases such as Huntington's and Alzheimer's have been slow to develop," said Dr. Finkbeiner, whose research at Gladstone investigates the interactions between genes, neurons, and memory. "We hope that our newfound understanding of precisely which misfolded proteins contribute to disease symptoms will speed up drug development for sufferers." Huntington's, an ultimately fatal disease that affects more than a quarter of a million people nationwide, is caused by mutations in the gene that creates the huntingtin, or htt, protein. As the mutated gene produces htt, a segment of the protein called polyglutamine is mistakenly expanded, distorting htt's natural shape and function. As a result, the misfolded protein malfunctions and can be toxic.
Login Or Register To Read Full Story