Scientists Clarify How RNA Molecules Are Folded in Ribosomes; Findings Reveal Unprecedented Detail

A team of scientists from Scripps Research and Stanford University has recorded in real time a key step in the assembly of ribosomes--the complex and evolutionarily ancient "molecular machines" that make proteins in cells and are essential for all life forms. The achievement, reported on November 21, 2019 in Cell, reveals, in unprecedented, detail how strands of ribonucleic acid (RNA), cellular molecules that are inherently sticky and prone to misfold, are "chaperoned" by ribosomal proteins into folding properly and forming one of the main components of ribosomes. The Cell article is titled “Transient Protein-RNA Interactions Guide Nascent Ribosomal RNA Folding.” The findings overturn the longstanding belief that ribosomes are assembled in a tightly controlled, step-wise process. "In contrast to what had been the dominant theory in the field, we revealed a far more chaotic process," says James R. Williamson, PhD, a professor in the Department of Integrative Structural & Computational Biology at Scripps Research. "It's not a sleek Detroit assembly line--it's more like a trading pit on Wall Street." For the study, Williamson's lab collaborated with the lab of Joseph Puglisi, PhD, a Professor at Stanford University. Although the work is a significant feat of basic cell biology, it should enable important advances in medicine. For example, some current antibiotics work by inhibiting bacterial ribosomes; the new research opens up the possibility of designing future antibiotics that target bacterial ribosomes with greater specificity--and thus, fewer side effects. More generally, the research offers biologists a powerful new approach to the study of RNA molecules, hundreds of thousands of which are active at any given time in a typical cell.
Login Or Register To Read Full Story