
University of Texas (UT) Southwestern Medical Center researchers have successfully boosted the regeneration of mature nerve cells in the spinal cords of adult mammals – an achievement that could one day translate into improved therapies for patients with spinal cord injuries. “This research lays the groundwork for regenerative medicine for spinal cord injuries. We have uncovered critical molecular and cellular checkpoints in a pathway involved in the regeneration process that may be manipulated to boost nerve cell regeneration after a spinal injury,” said senior author Dr. Chun-Li Zhang, Associate Professor of Molecular Biology at UT Southwestern. Dr. Zhang cautioned that this research in mice, published in the October 11, 2016 issue of Cell Reports, is still in the early experimental stage and is not ready for clinical translation. “Spinal cord injuries can be fatal or cause severe disability. Many survivors experience paralysis, reduced quality of life, and enormous financial and emotional burdens,” said lead author Dr. Lei-Lei Wang, a postdoctoral researcher in Dr. Zhang’s lab, whose series of in vivo screens led to the findings. The open-access Cell Reports article is titled “The p53 Pathway Controls SOX2-Mediated Reprogramming in the Adult Mouse Spinal Cord.” Spinal cord injuries can lead to irreversible neural network damage that, combined with scarring, can ultimately impair motor and sensory functions. These outcomes arise because adult spinal cords have very limited ability to regenerate damaged neurons to aid in healing, said Dr. Zhang, a W.W. Caruth, Jr. Scholar in Biomedical Research and member of the Hamon Center for Regenerative Science and Medicine.
Login Or Register To Read Full Story