Pre-Clinical Studies in Mice Show Strong Therapeutic Potential of CAR-T Cell Immunotherapy in Colorectal Cancer

(BY RACHEL DERITA, PhD Candidate,Thomas Jefferson University, Department of Cancer Biology) At Thomas Jefferson University in Philadelphia, researchers have recently shown that in mice, a CAR-T cell therapy successfully eliminated primary colorectal tumors and prevented metastatic growth. This is a breakthrough for the potential use of chimeric antigen receptor (CAR) - T cell therapy in the treatment of solid tumors. The University of Pennsylvania (UPenn) has previously made clinical advances recently with its use of CAR-T cell therapy in non-solid tumors, but there is still a great need for new therapeutic options involving the immune system in solid tumors. CAR-T cell therapy involves taking a patient’s own immune cells, then engineering them to target tumor cells specifically, and then infusing them back into the patient. In the current study, led by Dr. Adam Snook, PhD, Assistant Professor, T cells were engineered to target an antigen called GUCY2C. This protein had been previously identified as a biomarker and potential therapeutic target in colorectal cancer by the laboratory of Scott Waldman, PhD, MD, Chair of the Department of Pharmacology & Experimental Therapeutics at Jefferson. Dr. Snook also mentions that other high-mortality cancers such as esophageal and pancreatic cancer also express GUCY2C. This means that this pre-clinical study has implications for treating up to 25% of patients who would otherwise die from their cancer. In the Jefferson study, researchers used a “human-ready” mouse model of colorectal cancer to test CAR-T cell therapy targeted against GUCY2C. None of the mice experienced side effects and the therapy successfully fought the tumor over the duration of 75 days. The average survival time for the control group was only 30 days.
Login Or Register To Read Full Story