Life Science and Medical News from Around the Globe
Possible Breakthrough in Producing Large Quantities of Potential Therapeutic Drug Compound (FR) Originally Found in Bacterium Colonizing Coralberry Plant; Compound Inhibits Gq Proteins and Has Shown Suggestive Effectiveness in Asthma and Certain Cancers
For some years, an active substance from the leaves of an ornamental plant has been regarded as a possible forerunner of a new group of potent drugs. So far, however, it has been very laborious to manufacture this substance in large quantities. That could now change as researchers at the University of Bonn (Germany) have identified a bacterium that produces the substance and can also be easily cultivated in the laboratory. The results were published online on January 8, 2021 in Nature Communications. The open-access article is titled “Thioesterase-Mediated Side Chain Transesterification Generates Potent Gq Signaling Inhibitor FR900359.” The coralberry (photo) currently once again adorns many living rooms. In winter, it bears bright red fruits, which make it a popular ornamental plant at this time of year in the Northern hemisphere. For pharmacists, however, it is interesting for a different reason: it contains an active substance that has emerged in recent years as a beacon of hope against asthma and certain types of cancer. Unfortunately, obtaining this substance, with the cryptic name FR900359 (abbreviated: FR), in larger quantities is rather laborious. Cultivating the plants in greenhouses takes many weeks; moreover, the yield can vary enormously depending on the specimen. Incidentally, the plants do not produce the active ingredient themselves, but have bacteria in their leaves that do it for them. "However, these only grow in the coralberry and cannot be cultivated in the laboratory," explains Max Crüsemann PhD, of the Institute of Pharmaceutical Biology at the University of Bonn. Manufacturing FR is a complex undertaking. The bacteria have a special assembly line for this purpose, in which a number of enzymes work hand in hand. The bacterial genetic makeup specifies how this assembly line must be set up.