Newly Identified Pluripotent Liver Cell May Ultimately Provide Alternative to Liver Transplants; Single-Cell RNA Sequencing Key to This Major Discovery

Researchers at King's College London have used single cell RNA sequencing to identify a type of cell that may be able to regenerate liver tissue, treating liver failure without the need for transplants. In a paper published online on July 26, 2019 in Nature Communications, the scientists describe identying a new type of cell called a hepatobiliary hybrid progenitor (HHyP), that forms during our early development in the womb. The open-access article is titled “Single Cell Analysis of Human Foetal Liver Captures the Transcriptional Profile of Hepatobiliary Hybrid Progenitors.” Surprisingly, HHyP also persist in small quantities in adults and these cells can grow into the two main cell types of the adult liver (hepatocytes and cholangiocytes) giving HHyPs stem cell like properties. The team examined HHyPs and found that they resemble mouse stem cells which have been found to rapidly repair mice liver following major injury, such as occurs in cirrhosis. Senior author Dr. Tamir Rashid (photo) from the Centre for Stem Cells & Regenerative Medicine at King's College London said: "For the first time, we have found that cells with true stem-cell-like properties may well exist in the human liver. This in turn could provide a wide range of regenerative medicine applications for treating liver disease, including the possibility of bypassing the need for liver transplants." Liver disease is the fifth biggest killer in the UK and the third most common cause of premature death, and the number of cases is continuing to rise. It can be caused by lifestyle issues such as obesity, viruses, alcohol misuse, or by non-lifestyle issues such as autoimmune and genetic-mediated disease.
Login Or Register To Read Full Story