NanoVelcro Device Captures Circulating Tumor Cells

An international group led by scientists at UCLA’s California NanoSystems Institute has developed a new method for effectively extracting and analyzing cancer cells circulating in patients’ blood. Circulating tumor cells are cancer cells that break away from tumors and travel in the blood, looking for places in the body to start growing new tumors called metastases. Capturing these rare cells would allow doctors to detect and analyze the cancer so they could tailor treatment for individual patients. In his laboratory at the UCLA California NanoSystems Institute, Dr. Hsian-Rong Tseng, a Professor of Molecular and Medical Pharmacology, used a device he invented to capture circulating tumor cells from blood samples. The device, called the NanoVelcro Chip, is a postage-stamp–sized chip with nanowires that are 1,000 times thinner than a human hair and are coated with antibodies that recognize circulating tumor cells. When 2 milliliters of blood are run through the chip, the tumor cells stick to the nanowires like Velcro. Capturing the tumor cells was just part of the battle, though. To analyze them, Dr. Tseng’s team needed to be able to separate the cells from the chip without damaging them. In earlier experiments with NanoVelcro, the scientists used a technique called laser capture microdissection that was effective in removing individual cells from the chip without damaging them, but the method was time-consuming and labor-intensive, and it required highly specialized equipment. Now, Dr. Tseng and his colleagues have developed a thermo-responsive NanoVelcro purification system that enables them to raise and lower the temperature of the blood sample to capture (at 37 degrees Celsius) and release (at 4 degrees Celsius) circulating tumor cells at their optimal purity.
Login Or Register To Read Full Story