Mouse Study Shows That Existing Drugs That Inhibit the TRF1 Telomere Protein May Be Effective in Glioblastoma Treatment; Synergistic Therapeutic Effect Seen with Combinations of the TRF1 Inhibitors

Usually, scientists study the molecular biology of cancer to find new treatments, but sometimes, it is the other way round: when trying to find new treatments, scientists find key information on cancer biology. The researchers from the Telomeres and Telomerase Group at the Spanish National Cancer Research Centre (CNIO) in Madrid, Spain, have identified new drug combinations that prevent the development of therapy resistance in mice with glioblastoma, the most malignant brain tumor. The scientists also found an unexpected link between the RAS pathway, which is involved in numerous types of cancer, and telomere maintenance. This finding, which could be used in new lines of research, will be published in the medical journal EMBO Molecular Medicine. The open-acccess article is titled “Multiple Cancer Pathways Regulate Telomere Protection.” "We had a twofold result in our study," says Maria A. Blasco, PhD, Head of the Telomeres and Telomerase Group at CNIO, and CNIO Director. "We were looking for approved drugs that could block a new target, and we found them. In the process, we also found that some molecular pathways that have a role in cancer development also participate in the regulation of telomere maintenance. This is an interesting aspect of cancer biology that was unknown before." Telomeres are protective structures at the ends of chromosomes. The Telomeres and Telomerase Group at CNIO found that attacking the telomeres in cancer cells can be an effective strategy to stop cancer growth. Specifically, the researchers in this Group found that inhibiting the telomeric repeat-binding factor 1 (TRF1) telomere protein (image) impairs tumor progression in human and murine glioblastoma models.
Login Or Register To Read Full Story