MGH-Harvard Study Demonstrates the Neuronal Basis of Cooperative Social Interactions; Results May Lead to Targeted Treatment of Autism Spectrum Disorders (ASDs) and Other Social Behavioral Maladies

Social interactions rely on the ability to anticipate others' intentions and actions, and the identificantion of neurons that reflect another individual's so-called "state of mind" has been a long-sought goal in neuroscience. A study published online on February 26, 2015 in Cell reveals that a newly discovered set of neurons in a frontal brain region called the anterior cingulate is used in primates to predict whether or not an opponent will cooperate in a strategic decision-making task, providing information about the inherently unobservable and unknown decisions of others. By shedding light on the neuronal basis of cooperative interactions, the study paves the way for the targeted treatment of social behavioral disorders such as autism spectrum disorders. The Cell article is titled “Neuronal Prediction of Opponent's Behavior During Cooperative Social Interchange in Primates." "Many conflicts or adversarial interactions arise from an inability to accurately read another's intentions or hidden state of mind," says lead author Keren Haroush, M.D., a postdoctoral fellow at the Massachusetts General Hospital (MGH)-Harvard Medical School (HMS) Center for Nervous System Repair. "Therefore, understanding where and how these computations are performed within the brain may help us better understand how such complex social interactions occur." Previous studies had shown that brain cells called mirror neurons reflect the known and observable actions of one’s self and others. But these neurons do not represent another's imminent decisions or intentions. While neurons that predict another's intended actions have been widely hypothesized and are a cornerstone of many theories on social behavior, their existence had never before been demonstrated.
Login Or Register To Read Full Story