Label-Free Sensing of MCT1 and CD147 in Surface of Glioma-Derived Exosomes May Be Used for Tracking Metabolic Reprogramming and Malignant Progression in Glioma; Study Suggests Inhibitors of MCT1 & CD147 May Be Effective In Treating Gliomas

Researchers at the City University of Hong have demonstrated that malignant glioma cells release large numbers of exosomes containing high levels of MCT1 (monocarboxylate transporter 1) and its ancillary protein CD147 (cluster of differentiation 147). High levels of these two proteins are known to occur in malignant glioma and are associated with the tumor’s reprogramming to glycolysis (Warburg effect) as a rapid source of energy in a hypoxic environment. The authors showed that malignant glioma cells (GMs) release tremendous numbers of exosomes (nanovesicles of 30 nm to 200 nm in size), which promote tumor progression by the transport of pro-oncogenic molecules to neighboring cells. In their study, the authors found that hypoxia-induced malignant GMs strongly enhanced MCT1 and CD147 expression, playing a crucial role in promoting calcium-dependent exosome release. The hypoxic-GMs-derived exosomes contained significantly high levels of MCT1 and CD147, which could be quantitatively detected by noninvasive localized surface plasmon resonance (LSPR) and atomic force microscopy (AFM) biosensors, demonstrating that MCT1 and CD147 could be used as precise surrogate biomarkers for tracking parent GMs’ metabolic reprogramming and malignant progression as liquid biopsies. These new results were published on June 26, 2020 in Science Advances. The open-access article is titled “Label-Free Sensing of Exosomal MCT1 And CD147 for Tracking Metabolic Reprogramming and Malignant Progression in Glioma.” In the introduction to this article, the authors noted that glioma is the most common type of brain cancer and that it originates predominantly from neuroglial stem cells.
Login Or Register To Read Full Story