Life Science and Medical News from Around the Globe
Iron Transporter Discovery Offers Promise of New Treatments for Iron Deficiency and Parasitic Worm Infections
Humans survive by constantly recycling iron, a metal that is an essential component of red blood cells, but which is toxic outside of those cells. More than 90 percent of the iron in an adult human's 25 trillion life-sustaining red blood cells is recycled from worn-out cells. Almost 50 years ago scientists first began hypothesizing that our bodies must have a special protein 'container' to safely transport heme -- the form of iron found in living things – during the breakdown and recycling of old red blood cells and other types of heme metabolism. Now a team of scientists from the University of Maryland, Harvard Medical School, the National Institutes of Health and the University of Utah School of Medicine have identified this long-sought heme-iron transporter and shown that it is the same HRG1 protein that a common microscopic worm, C. elegans, uses to transport heme. In humans, the iron in heme is the component that allows hemoglobin in red blood cells to carry the oxygen needed for life. The team's findings are based on studies in human, mouse, zebrafish, and yeast systems, and are published in the February 5, 2013 issue of Cell Metabolism. "Our current work reveals that the long-sought heme transporter that permits humans to recycle over 5 million red blood cells per second in our spleen and liver, is the same HRG1 transporter protein that my students and I discovered in worms in 2008, and which we showed at that time is used by C. elegans to safely carry heme-iron that it obtains from dirt into its intestine," says team leader and corresponding author Dr. Iqbal Hamza, a University of Maryland associate professor in the Department of Animal & Avian Sciences. "Moreover, we show in this current study that mutations in the gene for HRG1 can be a causative agent for genetic disorders of iron metabolism in humans," he says.