Interaction of Viral DNA and Cytoskeleton Is Ancient Evolutionary Process; Scientists Show Bacteriophages Infecting Bacteria That Lack Cytoskeleton Carry Gene for Producing Cytoskeleton Filaments to Enable Proper Trafficking of Viral DNA through the Cell

Researchers from Ludwig-Maximilians-Universitaet (LMU) in Munich, Germany have demonstrated, for the first time, that bacteriophages (bacterial viruses) carry genetic instructions for proteins that mediate the transport of their DNA to specialized replication sites in the host cell. Viruses are essentially inert nucleoprotein particles that come alive only when they find the right host cells, on which they depend for their reproduction. Bacteriophages (or “phages” for short) are viruses that infect bacteria. Work carried out by researchers led by Dr. Marc Bramkamp, who is Professor of Microbiology at LMU, and Professor Julia Frunzke at the Jülich Research Center now shows that some bacteriophages deliver certain proteins required for optimal replication of their own genomes to host cells that do not themselves possess them. The new findings were published online on April 27, 2015 in an open-access article in Nucleic Acids Research. The article is titled “A Prophage-Encoded Actin-Like Protein Required for Efficient Viral DNA Replication in Bacteria." “In order to replicate their own hereditary material, viruses must ensure that it reaches the sites of DNA replication that are normally utilized by the host and the correct egress sites where the viruses leave the host. We have now shown, for the first time, how a so-called prophage (a viral DNA that has been integrated into the genome of its host during a prior infection) organizes its own transport to such a replication site when induced to self-excise from the bacterial chromosome,” Dr. Bramkamp explains. Viruses that infect the nucleated cells of higher organisms (eukaryotes) often exploit the so-called actin cytoskeleton, a complex system of metastable fiber-like structures (filaments) for this purpose.
Login Or Register To Read Full Story