Life Science and Medical News from Around the Globe
How the Woodpecker Avoids Brain Injury Despite High-Speed Impacts via Optimal Anti-Shock Body Structure
Designing structures and devices that protect the body from shock and vibrations during high-velocity impacts is a universal challenge. Scientists and engineers focusing on this challenge might make advances by studying the unique morphology of the woodpecker, whose body functions as an excellent anti-shock structure. The woodpecker's brain can withstand repeated collisions and deceleration of 1200 g during rapid pecking. This anti-shock feature relates to the woodpecker's unique morphology and ability to absorb impact energy. Using computed tomography and the construction of high-precision three-dimensional models of the woodpecker, Chinese scientists explain its anti-shock biomechanical structure in terms of energy distribution and conversion. Their findings, presented in a new study titled "Energy conversion in the woodpecker on successive pecking and its role in anti-shock protection of the brain" and published in the Beijing-based journal SCIENCE CHINA Technological Sciences, could provide guidance in the design of anti-shock devices and structures for humans. To build a sophisticated 3-D model of the woodpecker, scientist Dr. Wu Chengwei and colleagues at the State Key Lab of Structural Analysis for Industrial Equipment, part of the Department of Engineering Mechanics at the Dalian University of Technology in northeastern China, scanned the structure of the woodpecker and replicated it in remarkable detail. "CT scanning technology can be used to obtain the images of internal structures of objects … which is widely used in the medical field and expanded to mechanical modeling of biological tissue," they explain in the study.