First High-Resolution, Quantitative Tracking of Bacterial Membrane Vesicles (MVs) in Response to Antibiotic Treatment; Results “Will Undoubtedly Open a New Avenue of Research on This Fascinating and Currently Hot Topic”

Once regarded as merely cast-off waste products of cellular life, bacterial membrane vesicles (MVs) have since become an exciting new avenue of research, due to the wealth of biological information they carry to other bacteria, as well as other cell types. These tiny particles, produced by most bacteria, can bud off from outer cellular membranes, traveling along cell surfaces and occasionally migrating into intercellular spaces. Luis Cisneros (, PhD, is a researcher in the Biodesign Center for Biocomputing, Security and Society (, and the BEYOND Center for Fundamental Concepts in Science (, both at Arizona State University (ASU). In a new study, Dr. Cisneros and his colleagues describe the effects of antibiotics on MVs, demonstrating that such drugs actively modify the properties of vesicle transport. Under the influence of antibiotics, MVs were produced and released by bacteria in greater abundance and traveled faster and farther from their origin. The researchers suggest that the altered behaviors of MVs may represent a stress response to the presence of antibiotics and, further, that MVs liberated from the cell membrane may transmit urgent warning signals to neighboring cells and perhaps foster antibiotic resistance. "It's long been believed that membrane vesicles are involved in the cell-cell signaling process leading to changes in the collective behavior of living cells, like the coordination of survival responses due to antibiotic stress," Dr. Cisneros says. "But many details in the dynamics of this process are not yet well understood.
Login Or Register To Read Full Story