First-Ever Multi-Cellular Model of Zellweger’s Syndrome

Research groups worldwide have tried to develop a simple model of a rare, fatal disease called Zellweger's syndrome but none has succeeded, until researchers at the Faculty of Medicine & Dentistry at the University of Alberta in Canada did so in fruit flies. Zellweger's syndrome is a form of peroxisome biogenesis disorder, a group of deadly genetic diseases that claim the lives of children usually before they reach their first birthday. Researchers have been stumped as to how to make a multi-cellular model they can use to develop treatments. The chair of the Department of Cell Biology, Dr. Richard Rachubinksi, and his Ph.D student Fred Mast, with the help of Drosophila expert Dr. Andrew Simmonds, have been successful in developing a model of Zellweger's syndrome. This syndrome is the most common type of peroxisome biogenesis disorder. "Mating two parents that have the mutated gene gave us a mutant fly that mimicked the human phenotype," said Dr. Rachubinski. The fruit fly is ideal for medical research because its development can be studied from fertilization through to adulthood, and the development is much more rapid than in mice or humans. "The periods that you can allow for development are much shorter in flies so you can look at things much more quickly," said Dr. Rachubinski. "You get two generations per month." It is also less expensive to use Drosophila. As the research group moves forward testing compounds that could be used as pharmaceuticals to treat Zellweger's syndrome, they only have to use minute amounts compared to what would be needed for other laboratory models.
Login Or Register To Read Full Story