Life Science and Medical News from Around the Globe
Evolutionary Adaptation of ALOX15 Enzyme Optimizes Biosynthesis of Anti-Inflammatory and Pro-Resolving Lipoxins
The enzyme known as ALOX15 plays a crucial role in the production of anti-inflammatory and pro-resolving lipid mediators. As mammals have evolved, this enzyme has undergone changes to both its structure and function. Researchers from Charité - Universitätsmedizin Berlin have found that human ALOX15 appears to have developed a much higher capacity to stimulate the production of these lipid mediators than the enzyme variant found in lower primates. This discovery might suggest that the enzyme's structure has evolved to enable it to better control inflammation and to speed up the healing process. Results from this study were published online on July 13, 2016 in PNAS. The article is titled “Evolutionary Alteration of ALOX15 Specificity Optimizes the Biosynthesis of Antiinflammatory and Proresolving Lipoxins.” Working under the leadership of Professor Dr. Hartmut Kühn, Head of Charité's Lipoxygenase Research Laboratory, the researchers started by comparing the amino acid sequence of ALOX15 isoforms in different mammals. They found that, in lower mammals, the enzyme appeared to be structurally different from that found in higher primates such as chimpanzees, orangutans, and humans. The researchers then expressed the different ALOX15 isoforms as recombinant proteins in bacteria and explored the impact of the structural differences on enzyme functionality. "This allowed us to conclude the functional alterations ALOX15 has experienced during late primate evolution. One major functional consequence of this developmental process is that the enzyme of higher primates exhibits an improved capacity for the production of lipoxins, a special type of anti-inflammatory and pro-resolving mediator" explains Dr. Kühn.