Engineers Create Programmable Silk-Based Materials With Embedded, Pre-Designed Functions; Process Enables Creation of Mechanical Components with Functionality, Such As Surgical Pins That Change Color with Strain

Tufts University engineers have created a new format of solids made from silk protein that can be pre-programmed with biological, chemical, or optical functions, such as mechanical components that change color with strain, deliver drugs, or respond to light, according to a paper published online on December 27, 2016 in PNAS. The article is titled “Directed Self-Assembly of Silk Fibroin into Bulk Materials: Programming Function into Mechanical Forms from the Nano- to Macroscale.” Using a water-based fabrication method based on protein self-assembly, the researchers generated three-dimensional bulk materials out of silk fibroin, the protein that gives silk its durability. Then they manipulated the bulk materials with water-soluble molecules to create multiple solid forms, from the nano- to the micro-scale, that have embedded, pre-designed functions. For example, the researchers created a surgical pin that changes color as it nears its mechanical limits and is about to fail, functional screws that can be heated on demand in response to infrared light, and a biocompatible component that enables the sustained release of bioactive agents, such as enzymes. Although more research is needed, additional applications could include new mechanical components for orthopedics that can be embedded with growth factors or enzymes, a surgical screw that changes color as it reaches its torque limits, hardware such as nuts and bolts that sense and report on the environmental conditions of their surroundings, or household goods that can be remolded or reshaped. Silk's unique crystalline structure makes it one of nature's toughest materials. Fibroin, an insoluble protein found in silk, has a remarkable ability to protect other materials while being fully biocompatible and biodegradable.
Login Or Register To Read Full Story