Draft Genome for Upland Cotton—Which Accounts for More Than 90% of the World’s Cultivated Cotton and $500 Billion in Economic Impact—Is Established; Should Prove Resource for Engineering Superior Cotton Lines and Fiber Improvement

In a groundbreaking achievement led by an international team that includes Clemson (South Carolina) scientist Dr. Chris Saski, the intricately woven genetic makeup of Upland cotton has been decoded for the first time in the ancient plant's history. Dr. Saski participated in sequencing the genome, which is a crucial stepping-stone toward further advancements of understanding the inner workings of one of the most complex and treasured plants on the planet. The future implications of Dr. Saski's and his colleagues’ research, in the short and long terms, are both financial and holistic. Upland cotton, which accounts for more than 90 percent of cultivated cotton worldwide and has a global economic impact of $500 billion, is the main source of renewable textile fibers. The draft genome sequence, unveiled April 20, 2015 in an online, open-access article in Nature Biotechnology, will provide the know-how to engineer superior lines that will help clothe, feed, and fuel the ever-expanding human population. The Nature Biotechnology article is titled “Sequencing of Allotetraploid Cotton (Gossypium hirsutum L. acc. TM-1) Provides a Resource for Fiber Improvement.” "From the discovery standpoint - having a solid foundation to begin measuring genetic diversity and how the genes are organized - this is a game-changer," said Dr. Saski, Director of Clemson's Genomics and Computational Biology Laboratory. "With a genome map and genetically diverse populations, you can reveal the biology and DNA signature underlying cotton fiber development. Then you can use this information to breed cotton lines with advanced fiber elongation and fiber strength, which are crucial to the industry.
Login Or Register To Read Full Story