DNA Vaccines Protect Against SARS-CoV-2 in Rhesus Macaques, Science-Published Study Reports; Companion Study Suggests Initial Infection with SARS-Cov-2 Protects Against Re-Infection Following Repeat Exposure to the Virus

With nearly 5 million confirmed cases globally and more than 300,000 deaths from COVID-19, much remains unknown about SARS-CoV-2, the virus that causes the disease. Two critical questions are whether vaccines will prevent infection with COVID-19 and whether individuals who have recovered from COVID-19 are protected against re-exposure to the virus. Now, a pair of new studies, led by researchers at Beth Israel Deaconess Medical Center (BIDMC), suggests the answer to these questions is yes, at least in animal models. Results of these studies were published on May 20, 2020 in Science. The titles of the two open-access articles are “DNA Vaccine Protection Against SARS-CoV-2 in Rhesus Macaques,” and “SARS-CoV-2 Infection Protects Against Rechallenge in Rhesus Macaques.” “The global COVID-19 pandemic has made the development of a vaccine a top biomedical priority, but very little is currently known about protective immunity to the SARS-CoV-2 virus,” said senior author Dan H. Barouch (photo), MD, PhD, Director of the Center for Virology and Vaccine Research at BIDMC. “In these two studies, we demonstrate in rhesus macaques that prototype vaccines protected against SARS-CoV-2 infection and that SARS-CoV-2 infection protected against re-exposure.” In the first study, the team found that six candidate DNA vaccines--each formulation using a different variant of the key viral protein--induced neutralizing antibody responses and protected against SARS-CoV-2 in rhesus macaques. Dr. Barouch and colleagues, who began working toward a COVID-19 vaccine in mid-January when Chinese scientists released the SARS-CoV-2 genome, developed a series of candidate DNA vaccines expressing variants of the spike protein, the part used by the virus to invade human cells and a key target for protective antibodies.
Login Or Register To Read Full Story