Discovery May Aid Fight Againt Cholera

A team of biologists at the University of York in the UK has made an important advance in our understanding of the way cholera attacks the body. The discovery could help scientists target treatments for the globally significant intestinal disease which kills more than 100,000 people every year. The disease is caused by the bacterium Vibrio cholerae, which is able to colonize the intestine usually after consumption of contaminated water or food. Once infection is established, the bacterium secretes a toxin that causes watery diarrhea and ultimately death if not treated rapidly. Colonization of the intestine is difficult for incoming bacteria as they have to be highly competitive to gain a foothold among the trillions of other bacteria already present in situ. Scientists at York, led by Dr Gavin Thomas in the University’s Department of Biology, have investigated one of the important routes that V. cholera takes to gain this foothold. To be able to grow in the intestine, the bacterium harvests and then eats a sugar, called sialic acid, that is present on the surface of our gut cells. Collaborators of the York group at the University of Delaware, USA, led by Professor Fidelma Boyd, had shown previously that eating sialic acid was important for the survival of V. cholerae in animal models, but the mechanism by which the bacteria recognize and take up the sialic was unknown. The York research demonstrates that the pathogen uses a particular kind of transporter called a TRAP transporter to recognize sialic acid and take it up into the bacterial cell. The transporter has particular properties that are suited to scavenging the small amount of available sialic acid. The research also provided some important basic information about how TRAP transporters work in general. Dr.
Login Or Register To Read Full Story