Developing Artificial Skin That Can Regenerate Skin and Transmit Sensation at the Same Time

Development of biomimetic bionic skin and tactile neurotransmission system. Successful animal model implantation of bionic artificial skin composed of sensors and biomaterials.

Damage to nerve tissue due to skin defects such as burns, skin diseases, and trauma causes loss of sensory and cognitive functions that are essential for life-sustaining activities, as well as mental and physical distress. If the damage is severe enough that natural healing is not possible, surgical treatment is required to implant artificial skin in the affected area, but the artificial skin developed to date has focused on skin regeneration, providing a structure and environment similar to skin tissue, but has not restored sensation to patients. The Korea Institute of Science and Technology (KIST) has announced that a research team led by Dr. Youngmee Jung of the Center for Biomaterials and Dr. Hyunjung Yi of the Post-Silicon Semiconductor Institute, in collaboration with Prof. Ki Jun Yu of Yonsei University and Prof. Tae-il Kim of Sungkyunkwan University, has developed a human-implantable tactile smart bionic artificial skin. Unlike conventional artificial skin, which focuses on skin regeneration, smart bionic artificial skin can restore even permanently damaged tactile senses by fusing biocompatible materials and a tactile function delivery system implemented with electronic devices.

Login Or Register To Read Full Story