CRISPR-Cas9 Genome Editing Technology Can Correct Alpha-1 Antitrypsin Deficiency (AATD) in Mouse Models

Recent groundbreaking research has demonstrated proof-of-concept for using CRISPR-Cas9 genome editing technology to correct the gene mutation responsible for alpha-1 antitrypsin (AAT) deficiency, successfully making a targeted gene correction in the livers of affected mice that restored at least low levels of normal AAT. In two studies, both published in Human Gene Therapy, a peer-reviewed journal from Mary Ann Liebert, Inc., Publishers, two groups of researchers used somewhat different approaches to achieve these historic results in mouse models of AAT deficiency (AATD) and discuss why their findings are so important for the future treatment of patients with ATTD, The articles are available free for download on the Human Gene Therapy website until August 2, 2018. The article entitled "In vivo Genome Editing Partially Restores Alpha1-Antitrypsin in a Murine Model of AAT Deficiency " was coauthored by Dr. Terence Flotte, Editor-in-Chief of Human Gene Therapy, and Wen Xue, both from the University of Massachusetts Medical School (Worcester), together with a team of researchers from UMass Medical School, Tongji University (Shanghai, China), and Wuhan University (China). The researchers co-injected two adeno-associated viral (AAV) vectors: one to deliver the Cas9 component of the CRISPR-Cas9 system; and the second encoding an AAT gene-targeted guide RNA and carrying a homology-dependent repair template. This article was published online on May 14, 2018. Dr. Shen Shen, Editas Medicine, together with researchers from Editas and St.
Login Or Register To Read Full Story