Cost-Effective, Exosome-Based Blood Test Will Detect Specific miRNA Profile Predictive of Early-Onset Alzheimer’s Disease

A non-invasive blood test that could be used to diagnose early-onset Alzheimer’s disease (AD) with increased accuracy has been developed by University of Melbourne researchers. The research team previously determined that changes in the brain occur two decades before patients show signs of dementia. These changes can be detected through expensive brain imaging procedures. The new early-detection blood-test, which is based on profiling miRNAs carried in serum-borne exosomes, could predict these particular changes and a person’s risk of developing AD much earlier than is currently possible. The blood test has the potential to improve prediction for AD to 91 per cent accuracy. However, this needs to be further tested in a larger population across three to five years, due to AD being a progressive disease. In an initial trial group using the blood test, one in five healthy participants with no memory complaints tested positive. On further medical investigation using brain-imaging techniques, these patients showed signs of degeneration in the brain resembling AD features. Lead researcher Professor Andrew Hill (photo), from the Department of Biochemistry and Molecular Biology and the Bio21 Institute at the University of Melbourne, said the blood test would significantly advance efforts to find new treatments for the degenerative disease and could lead to better preventative measures prior to diagnoses. “This blood test would be crucial to the development of therapeutic and preventative drugs for AD. It can be used to identify patients for clinical drugs and monitoring improvement on treatment,” he said. The high accuracy of this blood test for the brain disorder comes from the ability to harvest protected bubbles (exosomes) of genetic material, called microRNA, found circulating in the bloodstream.
Login Or Register To Read Full Story