Carnegie Mellon Scientists Overcome Major Obstacles to Realizing Enormous Potential of PNAs; Synthetic Molecules Can Invade Double-Stranded DNA or RNA Under Physiological Conditions; Potentially Powerful Gene Editing/Therapy Tools

Carnegie Mellon University researchers have developed a synthetic molecule that can recognize and bind to double-stranded DNA or RNA under normal physiological conditions. The molecule could provide a new platform for developing methods for the diagnosis and treatment of genetic conditions. Their findings were published online on November 7, 2018 in Communications Chemistry, a new Nature journal. The open-access article is titled “Shape Selective Bifacial Recognition of Double Helical DNA.” The work was carried out by an international team of experts, including Carnegie Mellon Professor of Chemistry Danith Ly, PhD, an expert in peptide nucleic acid (PNA) design; Chemistry postdoc Shivaji Thadke, PhD; and Chemistry graduate student Dinithi Perera; Chemistry Professor and Director of Carnegie Mellon’s nuclear magnetic resonance (NMR) Facility Roberto Gil, PhD, and Arnab Mukherjee, PhD, a computer scientist at The Indian Institute of Science Education and Research at Pune. "Since the double-helical structure of DNA was first elucidated by Watson and Crick, scientists have been trying to design molecules that can bind to DNA and allow one to control the flow of genetic information," said Dr. Ly. "This is the first bifacial molecule that can invade double-stranded DNA or RNA under biologically relevant conditions." DNA, which contains all of an organism's genetic information, is made up of two strands of nucleotides. The nucleotides connect with each other using hydrogen bonds, forming a helical chain of Watson-Crick base pairs. While these base pairs provide a relatively simple code to our genetic information, getting into the double helix to change the code is difficult due to the strong bonds between the base-pairs.
Login Or Register To Read Full Story