Boosting PGC-1 Activity May Increase Lifespan, Fly Study Shows

One of the few reliable ways to extend an organism's lifespan, be it a fruit fly or a mouse, is to restrict calorie intake. Now, a new study in fruit flies is helping to explain why such minimal diets are linked to longevity and offering clues to the effects of aging on stem cell behavior. Scientists at the Salk Institute for Biological Studies and their collaborators found that tweaking a gene known as PGC-1, which is also found in human DNA, in the intestinal stem cells of fruit flies delayed the aging of their intestines and extended their lifespans by as much as 50 percent. "Fruit flies and humans have a lot more in common than most people think," says Dr. Leanne Jones, an associate professor in Salk's Laboratory of Genetics and a lead scientist on the project. "There is a tremendous amount of similarity between a human small intestine and the fruit fly intestine." The findings of the study, which was a collaboration among researchers at the Salk Institute for Biological Studies and the University of California, Los Angeles, were published in the November 2, 2011 issue of Cell Metabolism. Scientists have long known that calorie restriction, the practice of limiting daily food intake, can extend the healthy lifespan of a range of animals. In some studies, animals on restricted diets lived more than twice as long on average as those on non-restricted diets. While little is known about the biological mechanisms underlying this phenomenon, studies have shown that the cells of calorie-restricted animals have greater numbers of energy-generating structures known as mitochondria. In mammals and flies, the PGC-1 gene regulates the number of these cellular power plants, which convert sugars and fats from food into the energy for cellular functions. This chain of connections between the mitochondria and longevity inspired Dr.
Login Or Register To Read Full Story