Animal Model Suggests Blood-Brain Barrier Damaged in Sanfilippo Syndrome

A study into the effects of Sanfilippo Syndrome type B (MPS III B) has found that the barrier responsible for protecting the brain from the entry of harmful blood-borne substances is structurally and functionally damaged by the devastating disease. University of South Florida researchers identified damage in specific brain structures involved in the pathology of MPS III B, one of four Sanfilippo syndromes, all of which are inherited diseases of metabolism. The study, using a mouse model of MPS III B, was published online on March 7, 2011, in the journal PLoS ONE. Before this study, little was known about the integrity of the blood-brain barrier in this disease. "These new findings about blood-brain barrier structural and functional impairment in MPS III B mice, even at early disease stage, may have implications for disease pathogenesis and should be considered in the development of treatments for MPS III B," said study lead author Dr. Svitlana Garbuzova-Davis, an assistant professor in the Department of Neurosurgery and Brain Repair at the University of South Florida. Sanfilippo syndrome type B is caused by a deficiency in the Naglu gene, the gene responsible for producing an enzyme needed to degrade heparan sulfate. Naglu-deficient mice show progressive deterioration of movement, vision, and hearing. Neurons in various parts of the brain – including the olfactory bulb, cortex, thalamus, amygdala, and other areas – are affected by the disease. Consequently, patients with MPS III B experience a variety of pathological brain changes. "Among our findings was that endothelial cells and other cells comprising the blood-brain barrier are damaged, resulting in vascular leakage," said Dr. Garbuzova-Davis. "This compromise may lead to destruction of the fragile central nervous system equilibrium." Dr.
Login Or Register To Read Full Story