Adaptive Evolution of Human Color Vision

The evolution of trichromatic color vision in humans occurred by first switching from the ability to detect UV light to blue light (between 80-30 million years ago-MYA) and then by adding green-sensitivity (between 45-30 MYA) to the preexisting red-sensitivity in the vertebrate ancestor. The detailed molecular and functional changes of the human color vision have been revealed by lead author Dr. Shozo Yokoyama of Emory University and colleagues from Emory and other institutions. The article was published online on December 18, 2014 in the open-accessd journal PLOS Genetics. The molecular basis of functional differentiation is a fundamental question in biology. To fully appreciate how these changes are generated, it is necessary to evaluate the relationship between genes and functions. This is a difficult task because new mutations can produce different functional changes when they occur with different preexisting mutations, causing complex non-additive interactions. The blue-sensitive visual pigment in human evolved from the UV-sensitive pigment in the ancient Boreoeutherian ancestor by seven mutations. There are 5,040 possible evolutionary paths connecting them. The team examined experimentally the genetic composition and color perception of the visual pigment at every evolutionary step of all 5,040 trajectories. They found that 4,008 trajectories are terminated prematurely by containing a dehydrated nonfunctional pigment. Eight most likely trajectories reveal that the blue-sensitivity evolved gradually almost exclusively by non-additive interactions among the seven mutations.
Login Or Register To Read Full Story