Life Science and Medical News from Around the Globe
A New, Perhaps More Reliable Way to Diagnose Malaria
Over the past several decades, malaria diagnosis has changed very little. After taking a blood sample from a patient, a technician smears the blood across a glass slide, stains it with a special dye, and looks under a microscope for the Plasmodium parasite (image), which causes the disease. This approach gives an accurate count of how many parasites are in the blood — an important measure of disease severity — but is not ideal because there is potential for human error. A research team from the Singapore-MIT Alliance for Research and Technology (SMART) has now come up with a possible alternative. The researchers have devised a way to use magnetic resonance relaxometry (MRR), a close cousin of magnetic resonance imaging (MRI), to detect a parasitic waste product in the blood of infected patients. This technique could offer a more reliable way to detect malaria, says Dr. Jongyoon Han, a professor of electrical engineering and biological engineering at MIT. "There is real potential to make this into a field-deployable system, especially since you don't need any kind of labels or dye. It's based on a naturally occurring biomarker that does not require any biochemical processing of samples," says Dr. Han, one of the senior authors of a paper describing the technique that as published online on August 31, 2014 in Nature Medicine. Dr. Peter Rainer Preiser of SMART and Nanyang Technical University in Singapore is also a senior author. The paper's lead author is Dr. Weng Kung Peng, a research scientist at SMART. With the traditional blood-smear technique, a technician stains the blood with a reagent that dyes cell nuclei. Red blood cells don't have nuclei, so any that show up are presumed to belong to parasite cells.