2014 Chemistry Nobel Awarded to Two Americans, One German for Development of Fluorescence-Based Nano-Microscopy

On October 8, 2014, The Royal Swedish Academy of Sciences announced that it had decided to award the Nobel Prize in Chemistry for 2014 to Eric Betzig (photo), Ph.D., Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA, Stefan W. Hell, Ph.D., Max Planck Institute for Biophysical Chemistry, Göttingen, and German Cancer Research Center, Heidelberg, Germany, and William E. Moerner, Ph.D., Stanford University, Stanford, CA, USA “for the development of super-resolved fluorescence microscopy.” For a long time optical microscopy was held back by a presumed limitation: that it would never obtain a better resolution than half the wavelength of light. Helped by fluorescent molecules, the Nobel Laureates in Chemistry 2014 ingeniously circumvented this limitation. Their ground-breaking work has brought optical microscopy into the nanodimension. In what has become known as nanoscopy, scientists visualize the pathways of individual molecules inside living cells. They can see how molecules create synapses between nerve cells in the brain; they can track proteins involved in Parkinson’s, Alzheimer’s, and Huntington’s diseases as they aggregate; they follow individual proteins in fertilized eggs as these divide into embryos. It was all but obvious that scientists should ever be able to study living cells in the tiniest molecular detail. In 1873, the microscopist Ernst Abbe stipulated a physical limit for the maximum resolution of traditional optical microscopy: it could never become better than 0.2 micrometers. Eric Betzig, Stefan W. Hell, and William E. Moerner are awarded the Nobel Prize in Chemistry 2014 for having bypassed this limit. Due to their achievements the optical microscope can now peer into the nanoworld. Two separate principles are rewarded.
Login Or Register To Read Full Story